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Abstract be essentially the same as obtained for higher dimensional

In a recent paper, S. M. Lund, A. Friedman, and Gl.)eam models to help explain this equivalence. The Debye

Bazouin Sheet beam model for intense space-charge: with Screening equivalence suggests that cqllectlve spaggeha
C . . effects can be accurately represented in the 1D sheet beam
application to Debye screening and the distribution of par-

ticle oscillation frequenciesin a thermal equilibrium beam, model. Finally, motivated by the simple 1D space-charge

model being capable of representing realistic space-eharg

in press, Phys. Rev. Special Topics — Accel. and Beané ects, the self-consistent distribution of particle ibae

(2011), a 1D sheet beam model was extensively analyzeno.n frequencies in a thermal equilibrium sheet beam is

In this complementary paper, we present details Ofanur‘necr%llculated and shown to become very broad for high rel-

ical procedure developed to construct the self-consistenf. . . . .
electrostatic potential and density profile of a thermalie ua lve space-charge intensity. This result helps explaiy wh
e P o yP ®4Ysmooth beam distributions are observed in experiment and
librium sheet beam distribution. This procedure effedyive _. : o -

: . : simulations[3, 4, 5] to have a surprising degree of stabilit
circumvents pathologies which can prevent use of stan- . AR

L . ; when space-charge intensity is high.

dard numerical integration techniques when space-charge

intensity is high. The procedure employs transformations 1o analysis presented in Ref. [1] is extensive and was
and is straightforward to implement with standard numerizayiewed at the 2011 PAC meeting. It makes little sense
cal methods and produces accurate solutions which can 3¢ esent an abbreviated summary of parts of it in a short
applied to thermal equilibria with arbitrarily strong SBac conference paper. Motivated by this, here we present de-
charge intensity up to the applied focusing limit. tails of a numerical procedure employed in Ref. [1] to accu-
INTRODUCTION rately and efficiently calculate the potential and densiity o

_ . thermal equilibrium sheet beam. This procedure was only
In Ref. [1], a 1D sheet beam model is extensively dey riefly outlined in Ref. [1]. However, the details are use-

veloped to provide a simplified framework for analysis o ul because it is a common problem for high space-charge

space-pharge eﬁects in beams. Top|c§ covere;d mplude § ?ensity that the potential and density of a continuousty f
_(analyt|cal) _solut!qn f(_)r the glectrostatlc self-field Iumt_— .cused equilibrium distributiong(H) which are a smooth
ing careful identification of image charge effects anising | - ton of the Hamiltoniard lead to extremely flat den-

from any conducting boundaries of the confinement georr%'ity profiles out to near the radial edge of the beam due

etry. A Vlasov-Poisson model is presented along with cony strong Debye screening of the linear applied focusing

servation constraints supported by the model and equ”iti’érce. For high space-charge intensity, this can makeirec

rium and stability constraints are reviewed. General CeMkumerical solution of the potential profile and the related

tr_0|d ‘?‘.nd ervelope moment equ.atlons are Qerlved and thgnsity profile surprisingly problematic due to limited nu-
simplified for the case of a uniform density, rms equiv-

alent beam and the simplified forms are compared to rmerlcal precision and the stiff, highly-nonlinear form bét

- . . . ®quilibrium Poisson equation. Analogous problems also
sults from more familiar, higher dimensional models. Th d g g b

Qceurs in higher dimensional versions of thermal and other

self-consistent 1D KV distribution which generates the UM mooth equilibrium beam distributions. Past publications

f?rr; d_en5|ty bﬁam IS rf‘few?welg '”C'“d'r.‘g lextens_lons tlo .'tnf pically avoided this issue by only analyzing parameters
clude image charge efiects. ks equivalency 1S expioltefi, o .o standard numerical methods allow straightforward
to develop param(_etrlc equivalences t.o hl_gher d'men.s'onﬁltegration for the equilibrium potential. Unfortunately
b(ra]a:nzmodelsr;tilhls gle nfe ral fo;r‘rmlartrl:nl IS thiﬁgr?prgheﬁ t Pace—charge dominated beams can typically be well within
analyze a continuously focused thermal quilibrium Shee/ parameter ranges where such direct integrations fail due
beam. Equilibrium properties are pa_lra_metrlca_lly calca_dat to these numerical issues. Recently, two methods were de-
:_r(l)orl];remsot;(;\;\;n .:]O sbe't(;e(r;irrlfsbcl)(; Slmlgrff)orcr;gg:;d'm;r\?eloped to deal with this difficulty and thereby allow anal-

: n Spi u N9 Ve sis of relevant parameter regimes to space-charge domi-

different in the 1D sheet beam model relative to 2D an. ated beams. In Ref. [2] a method was developed for a 2D

3D models. The screened. mtgracﬂ_on .Of a te?t charge 'tRermal equilibrium beam by using a combination of a non-
serted into the thermal equilibrium distribution is shown t |, - power series solution near the beam-axis out to a ra-

*This research was performed at LLNL and LBNL under US pogdius near the beam edge where the series is still convergent
Contacts No. DE-AC52-07NA27344 and No. DE-AC02-05CH11231  and the solution could then be numerically continued into




the beam edge using standard integration techniques. Adere,

ternatively, in Ref. [6] an accurate, but approximate analy 5 o

ical solution was derived that is valid for high space-clearg b= my B¢ <1k20x2 + 99 ) (7)
intensity. Both of these methods are complicated and the T 27 m; By ¢

second is only valid for an imprecisely defined range of . . L .
parameters. Here, we present an alternative numerical pIIS-a dlmenS|o_nIess streamfun_cﬂop, ?.x./(%)‘D) IS a
cedure similar, but simpler to the one applied in Ref. [2 c;aledr-coordlnate rg?a?ered n rglat|V|st|c Debye lengths
within the context of a 1D sheet beam thermal equilibriumy/it! A> = [«oT/(g*R)]"/* denoting the Debye length
This method is accurate and easy to apply and with miné?rmed by the on-axis beam densityand

modifications is applicable to a wide range of smooth dis- VfﬂfCQkéo

tribution functions. A= —————

THERMAL EQUILIBRIUM is a positive dimensionless parameter{ A < co) relat-
POISSON EQUATION ing the ratio of applied to space-charge defocusing forces.
Analysis of a rest frame transformation shows thain the definition forA in Eq. (8),&, = [¢?7/(eom)]/?
the 1D Maxwell-Boltzmann equilibrium distribution denotes the plasma frequency formed from the on-axis
flz, ") = f(H)is[1] beam density:. The scaled Poisson equation (6) is solved
i for ¢ subject to the “initial” conditions)(p = 0) and
) = (m’yb §c2> / fexp (my,,ﬂg(;?H) W o /0pl,=0 = 0 to effectively specify the effective equi-

- ®)
p

T T librium potential viay or the scaled equilibrium density
Here, N=Loe )
1 1 qo n
H==-a2"?+ k%2’ + ——— 2 . . .
27 90T my; B2 c? @ as a function ofp = z/(vwAp) in terms of the single

dimensionless parameteéx. Ultimately, the equilibrium
should be specified for most applications in terms of usual
accelerator parameters such as perveances and emittances.
Nonlinear equations of constraint to apply such parameters
can be found in Ref. [1].

Before specifying the numerical method employed to
generate the solution to Eq. (6) in the next section, we
present the solution in Fig. 1 for a wide range Afin

is the Hamiltoniang andm are the ion charge and mass,
andz’ are the particle coordinate and anglés the speed
of light in vacuo, 3, = const andy, = 1/4/1 — 37 are
the axial relativistic factors of the beam, = const is a
density scale, and’ = const is the thermal temperature
(energy units, lab frame measure). The potentightisfies
the Poisson equation

522 terms of the scaled density’ = exp(—+) as a function
9 o= 4, (3) of p = x/(wAp). The streamfunction) is easily ob-
r €0 tained fromy = — In \ and the solution is even ipwith
wheree, is the permittivity of free-space, and N(p) = N(=p). For very small values of\, V' is exceed-

ingly flat p well away from the beam edge before dropping
< to exponentially small values asincreases by a few units
n= / da’ f (4) (regardless of the small value &f) near the beam edge.
o How wide the flat core becomes nsensitively depends
is the beam number density. Without loss of generality wen the (small) value oA > 0. Although some values of
assume a potential referengér = 0) = 0 which iden- A chosen in Fig. (6) appear very small, real space charge
tifies 7 with the on-axis density, i.en(z = 0) = 7. As dominated beams can have exceedingly smallThis is
expected, the thermal distribution (1) is consistent with #lustrated in Fig. 2 where results presented in Ref. [1] are
spatially uniform kinetic temperatufg, with applied to plotA versus rms equivalent beam tune depres-
siono/og. o/og — 1 corresponds to a warm beam with
_ 9 9 ffooodx’ 22 f negligible space-charge strength, whereas, — 0 corre-
T, = mmByc W sponds to a cold beam with space-charge nearly fully can-
> celing the applied focusing in the core (space-charge)limit
To fully specify the equilibrium distributionf(F) in ~ due to strong Debye screening. Evidently,o, << 1
Eq. (1), The potentialh must be self-consistently calcu- cOrresponds to exceedingly small values’ofand a very
lated from the Poisson equation (3) using the density (4}at béam core many Debye lengths in width. In the core,
for the thermal distribution. It is straightforward to show? = 0 before rapidly growing near the beam edge where

that the resulting Poisson equation can be expressed as[#]€ density abruptly drops. This highly nonlinear struetur
can demand extreme precision and result in problems when

02 v numerically integrating Eq. (6) fap as a function op from
szqﬁ =l+A-e" ®)  the initial conditions)(p = 0) = 0 = 9v/9p|,=o.

=T =const (5)
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Figure 1: Solution for scaled density’ = n/n versus
scaled radial coordinage= x/(v,Ap) for indicated values
of the dimensionless space-charge param&tgt].
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Figure 2: Dimensionless space-charge paramiteersus
rms equivalent beam tune depressigfo [1].

NUMERICAL SOLUTION FOR THE
DENSITY AND POTENTIAL

To formulate a method to circumvent the issues outline

with direct numerical integration of Eq. (6) far for small
A < 1, we first express Eqg. (6) in terms &f = exp(—))
which leads to

1PN 1 (NN
N 0p2 N2

o) = N—1-A,
subject ta\V (p = 0) = 1 anddN /dp|,—o = 0. Take

(10

N =1+0N (11)

and expand Eq. (10) to leading orderdi” to obtain

O?5N
— ~(1-2A - A 12
5y = (1= 200N (12)
subject tod NV (p = 0) = 0 = 6N /dp|,—o. The solution
is
SN = —%pQ. (13)

It is easy to see from Egs. (11) and (13) how precisioﬁs]
must be carefully tracked for very smal to produce a

valid numerical solution for) = —In N in Eq. (6) with
limited machine/method precision. Choose a cut-off value
of p, p = p. where the solution fos " in Eq. (13) will

be applied forp € [0, p.] and denote&N(p = p.) =
—(A/2)p2 = —0N.. We usedN.. as a control parameter
to setp. and take

- —ln(l—%pQ), 0<p< 72%\[07 (14)
Numerical V2 < p < pmax

Here, numerical solution is constructed by integrating
Eqg. (6) forp € [p., pmax] SUbject to the initial condition

N et A S I VS
Y(p=pc) = 1n<1 2pc>, 99|, = 1= D2

andp = pmax is Some maximum value of whereN (p =
Pmax) IS negligible. This value can be found numerically.
From numerical tests we find for small that the flat cen-
tral region of V' extends fromp = 0t0 p = ppar =~
2.31og((A). Takingpmax = priatrtPedgeWherepedge > 5 to
account for the (invariant of scale &) fall-off of the edge

of AV is adequate to placenax Where N is exponentially
small, but not so large to result in unnecessary numerical
work. For numerical integration methods with fractional
numerical precisiorl0~?, it should be safe to choose the
cutoff parameter as N, ~ 10~ (®~2), Direct numerical
integrations of Eq. (6) for) works for A ~> 10~* and

the procedure outlined above should (unless high precision
integrators are employed) be applied for~< 1074,

DISCUSSION

Details have been provided on a simple but robust nu-
merical method to solve the thermal equilibrium Poisson
equation for a 1D sheet beam for arbitrarily strong space-
charge intensity. This method was extensively employed
E Ref. [1] and can be applied in slightly modified form to

igher dimensions. Similar techniques can be applied to
other, non-thermal choices of smooftiH) representing
continuously focused equilibrium distributions both f@ 1

sheet beam models and in higher dimensions.
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